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a b s t r a c t

Event monitoring is a common application in wireless sensor networks. For event monitor-
ing, a number of sensor nodes are deployed to monitor certain phenomenon. When an
event is detected, the sensor nodes report it to a base station (BS), where a network oper-
ator can take appropriate action based on the event report. In this paper, we are interested
in scenarios where the event must be reported within a time bound to the BS possibly over
multiple hops. However, such event reports can be hampered by compromised nodes in
the middle that drop, modify, or delay the event report.
To defend against such an attack, we propose SEM, a Secure Event Monitoring protocol

against arbitrary malicious attacks by Byzantine adversary nodes. SEM provides the follow-
ing provable security guarantees. As long as the compromised nodes want to stay unde-
tected, a legitimate sensor node can report an event to the BS within a bounded time. If
the compromised nodes prevent the event from being reported to the BS within the
bounded time, the BS can identify a pair of nodes that is guaranteSchool of Electrical and
Computer Engineeringed to contain at least one compromised node. To the best of our
knowledge, no prior work in the literature can provide such guarantees.
SEM is designed touse theminimumlevel of asymmetric cryptographyduringnormal oper-

ationwhen there is noattack, anduse cryptographic primitivesmore liberallywhenanattack
is detected. This designhas the advantage that the overall SEMprotocol is lightweight in terms
of the computational resources and the network traffic required by the cryptographic oper-
ations. We also show an operational example of SEM using TOSSIM simulations.

! 2013 Elsevier B.V. All rights reserved.

1. Introduction

Over the past years, wireless sensor networks (WSNs)
have received a great amount attention as a promising
technology for a variety of applications. One of the applica-
tion scenarios for WSNs is in the domain of event monitor-
ing systems [1,2]. In event monitoring, the WSN is
deployed over a region where some phenomenon is to be
monitored. For example, a number of sensor nodes could
be deployed over a battlefield to detect enemy intrusion.
When the sensor nodes detect the event being monitored,
the event is reported to a base station (BS), which can then
be used by a network operator to take appropriate actions.
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Significant work inWSNs to date has focused on making
data gathering (equivalently, event monitoring) energy-
efficient. In this work, we are concerned with timely and
secure reporting of event information, even in the presence
of adversarial nodes. The adversarial nodes can include
some that have been compromised and therefore possess
the cryptographic keys.

We give two examples of application scenarios where
accurate and timely collection of sensor data in a multi-
hop setting is important. First consider the smart power grid
where myriad sensors will be deployed through the trans-
mission and distribution infrastructure. State estimation is
performed based on the inputs from the sensors to deter-
mine if corrective action is needed, such as, reducing the
load on a sub-station. Incorrect state estimation can cause
devastating consequences such as blackout of a region [3].
Such incorrect state estimation can be caused by delaying
or dropping meter readings from a modest fraction of sen-
sors. Awireless surveillance systemusing infrared (IR) beam
sensors is another example, since many of the commer-
cially-available wireless IR beam sensor nodes are plugged
into existing electrical outlets [4]. In this case, missing an
event report can lead to failure in taking immediate actions
whenaburglar attempts a forcible entry.Note that inbothof
thesecases, there isnoenergyconstrainton thenetwork,but
there is a high security requirement. Also, in both these
cases, physically protecting the nodes is difficult and there-
fore one has to acknowledge the possibility of nodes, which
were originally a part of the network, being compromised.

Although relaxing the energy constraints gives us
more freedom to design sophisticated control protocols,
it remains a difficult task to secure the event reporting
process when the monitoring network is under attack.
First, the sensor nodes are inherently vulnerable to at-
tacks because they are usually deployed in non-protected
environments. The adversary can often easily access the
sensor nodes, and may even compromise them by repro-
gramming them. This is particularly of concern since effi-
cient reprogramming protocols have been developed [5]
and in practice, they rarely use cryptographic security.
Once some sensor nodes in a monitoring sensor network
are compromised, they may prevent other legitimate
sensor nodes from reporting information in a timely
manner. Second, the sensor nodes are often based on
inexpensive platforms with low computational and com-
munication capabilities. Hence, there are sill significant
limitations in terms of the amount of expensive crypto-
graphic mechanisms that can be used. For example, in
the Micaz platform, TinyECC public-key cryptography
[6] takes about 2 s to generate a single signature and
about 2.4 s to verify a signature! As a result, we cannot
liberally use such cryptographic mechanisms due to the
excessive computation and communication overhead,
for fear of delaying the event-report process.

For this reason, we propose SEM, a secure event monitor-
ing protocol that can work even when there exist compro-
mised nodes in the network. We are targeting a multi-hop
network scenario where all sensor nodes except the BS
node can be compromised. The compromised nodes can
launch arbitrary attacks in a Byzantine manner, such as
dropping, modifying, and delaying the event report. They

may also arbitrarily collude among themselves. Even in
such a hostile environment, SEM can provide the following
provable security guarantees:

! As long as the compromised nodes want to avoid being
detected, a legitimate sensor node can report an event
to the BS within a bounded time.

! If the compromised nodes launch an attack that causes
the event report not to arrive at the BS within the
bounded time, the BS can identify a pair of nodes that is
guaranteed to contain at least one compromised node.

We believe that in many practical scenarios, the adver-
sary has the incentive to keep the compromised nodes
from being detected, because otherwise, the network oper-
ator will be able to remove or reprogram the detected com-
promised node one by one, eventually defeating the attack.
Hence, the above security guarantees are meaningful and
useful to attain.

Our design of SEM is parsimonious in its usage of re-
sources - both in the usage of expensive computations
for cryptographic operations, and in generating additional
network traffic. Specifically, SEM makes a distinction be-
tween a normal operation mode and a diagnosis mode
(when some attack has been detected and culprit nodes
are sought to be identified). In the normal operation mode,
SEM only uses a minimal (and indispensable) level of asym-
metric cryptography. In detail, the BS signs on a special
packet to collect the event reports, and the normal sensor
nodes verify only the signature from the BS. This is practi-
cally important because we expect that for most networks,
the vast majority of the time will be the normal mode of
operation, free of security attacks.

The remainder of this paper is organized as follows. Sec-
tion 2 gives an overview of the previous works for event
monitoring. In Section 3, we formally state our objective,
assumptions, and notations. In Section 4, we discuss what
approach we have to take to achieve our objective and pro-
vide a straw-man protocol. In Sections 5 and 6, we present
SEM in detail, and show the advantage of SEM over the
straw-man protocol. Section 7 discusses the relevant mis-
cellaneous issues. We provide experiment results for SEM
in Section 8, and give concluding remarks in Section 9.

2. Related works

Event monitoring applications of WSNs have been stud-
ied for a variety of scenarios, including military surveil-
lance and forest-fire detection. A common research issue
of event monitoring is energy efficiency and lifetime max-
imization of sensor networks. Several schemes are pro-
posed to address the optimization of sensing coverage
(e.g., [1,7,8]), the goal of which is to monitor the system
of interest using the minimal amount of energy resources.
Another direction to improve energy efficiency is to bal-
ance the energy consumption over the sensor nodes (e.g.,
[7,9]), since unbalanced energy dissipation causes some
nodes to die faster than others, thus reducing the network
lifetime. However, most of existing protocols are designed
without security in mind. Hence, the compromised nodes

J. Koo et al. / Ad Hoc Networks 11 (2013) 1820–1835 1821



in the middle of the route from the reporting sensor node
to the BS can easily break the protocols by dropping/mod-
ifying/delaying the event report.

Recently, event monitoring in the presence of compro-
mised nodes began to receive attention [10]. The authors
in [10] assume the Man-in-the-middle attackers that can
drop, delay, or manipulate the event report from a legiti-
mate sensor node. Their approach to defend against the
compromised nodes is to make the sensor nodes flood the
event report over the entire network. Thismethodwillwork
when there exists at least one ‘‘legitimate route’’ from each
reporting node to the BS that does not contain any compro-
mised nodes. However, if the adversary simply compro-
mises all the neighboring sensor nodes of the BS, and thus
isolating theBS, thismethod cannotprovide anyguarantees.

Detecting malicious actions by intermediate nodes has
been studied in the area of path-quality monitoring [11–
14]. In path-quality monitoring, the goal is to reliably raise
an alarm when the packet-loss rate and the packet-delay
exceed certain thresholds. There are two common ap-
proaches. One is to make a destination node return the
number of the packets that it receives from a source node.
The other is to make the source node perform the active
probing (e.g., ping or traceroute) on the routing path. How-
ever, just detecting misbehaviors, without identifying the
malicious nodes, is insufficient. Consider the case when
adversary nodes encircle the BS. All paths are measured
to be of low quality. However, there is still no way to carry
out communications between a sensor node and the BS.
This scenario motivates us to introduce a new secure guar-
antee of identifying malicious nodes. By pin-pointing the
malicious node, the BS can then make the network opera-
tor take it away from the network or replace it.

Localizing the malicious node is a more difficult prob-
lem than just detecting the malicious activity. Much of
the early work tackled this problem through the mecha-
nism of overhearing [15,16]. However, the solutions in this
category do not require an evidence when a node reports a
misbehavior, and thus cannot handle false misbehavior
reporting and collusion among Byzantine adversaries. Sub-
sequent work – ODSBR [17] and PAAI [18] – can handle col-
luding Byzantine adversaries by using acknowledgment-
based approaches that require use of onion-manner sign-
ing from nodes between the source and the destination.
Since the onion-manner signed acknowledgment mecha-
nism takes a high overhead (too much time, bandwidth,
and packet length), ODSBR and PAAI use this to identify a
faulty link only after the packet-drop rate becomes higher
than a threshold. However, any single event report can be a
critical one (imagine the enemy invasion detection in a
battle field). Thus, losing the event reports until the thresh-
old test fails is not acceptable from the event-monitoring
viewpoint. One could resolve this difficulty by a simple
modification to ODSBR and PAAI in such a way that the
onion-manner signed acknowledgment is required for
every data packet from every node on a traffic route
(see the straw-man protocol in Section 4). However,
such a modification makes the scheme infeasible for re-
source-constrained wireless networks because we go back
to the issue of high computation and communication
overhead.

To the best of our knowledge, no existing solution can
work in hostile environments where the compromised
nodes may block all the routing paths coming into the BS,
thereby leaving no chance for a legitimate node to report
an event in time. In our work, we focus on resolving this is-
sue and providing provable security guarantees with con-
sideration of communication and computation overhead.

3. Problem statement

We consider a multi-hop wireless sensor network that
consists of a base station (BS) node and a number of sensor
nodes. A sensor node is in charge of sensing a delay-sensi-
tive event like a power line shutoff. A network operator
monitors the sensor network through the BS that attempts
to collect the events (if any) from the sensor nodes. It is
important that if an event occurs at a sensor node, the BS
gets informed of it as soon as possible in order for the net-
work operator to take action in time.

Since some sensor nodes are more than one hop away
from the BS, the events sensed at such nodes are reported
to the BS through a multi-hop routing path as shown in
Fig. 1. However, if a node in the middle of the routing path
is compromised, the compromised node may drop/modify
the event report, or delay it for a very long time. This prob-
lem cannot be resolved even if a legitimate node sends the
event by flooding over the entire network, because the BS
may be completely encircled by compromised nodes. For
example, in Fig. 1, if nodes a and f are compromised, no other
sensor nodes can successfully report an event to the BS even
by flooding. Isolating BS is often easy to achieve because the
neighboring nodes of BS are not that many.

3.1. Objective

The objective of this paper is to overcome the aforemen-
tioned difficulty in monitoring delay-sensitive events. We
want to devise a protocol that provides the following prov-
able security guarantees. (1) As long as the compromised
nodeswant to stay undetected, a legitimate node can report
an event to the BSwithin P timeunits; and (2) If the compro-
mised nodes launch an attack that causes the event report
from a legitimate node not to reach the BS within P time
units, the BS can identify a pair of nodes that is guaranteed
to contain at least one compromised node.

Note that with the above security guarantees, we can
defeat an attack even in the situation where the BS is com-

Fig. 1. Multi-hop routing paths to collect events.
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pletely encircled by compromised nodes. This is because
the network operator will be able to remove or reprogram
the detected compromised node one by one, eventually
securing a safe route to the BS for collecting event reports.

Note also that we do not guarantee that all sensor nodes
will report a detected event to the BS within P time units:
once a node is compromised, the event occurred at the
compromised node may not be reported. Intuitively, if
the reporting node is itself compromised, there is no way
to get informed of the event that occurs at the node. How-
ever, if an event is sensed by multiple sensor nodes, say n
sensors, and at least one of them is legitimate, we can still
guarantee that the event is reported to the BS within P time
units by our protocol. To make our protocol useless, the
adversary needs to compromise all n sensor nodes. In
many practical scenarios, the value of n may be large
(e.g., all sensor nodes around an invasion route by the en-
emy movement). In contrast, without our protocol, the
adversary only needs to compromise the neighboring
nodes of the BS to nullify the monitoring system. Thus,
the security benefit from our protocol is significant.

3.2. Assumptions

(1) We consider a stationary network: the locations of
all nodes are fixed. (2) Only the BS can be trusted, i.e.,
any sensor node can be compromised and then behave
maliciously. The compromised nodes may arbitrarily col-
lude among themselves. (3) Byzantine adversary model is
considered, i.e., the compromised nodes can take arbitrary
malicious actions. For example, the compromised node
may drop, modify, or delay the event reports. Further, they
may launch a jamming attack to prevent some nodes in the
network from communicating. However, for ease of pre-
sentation, we assume for the time being that there is no
jamming attack. We will relax this assumption in Section 7.
(4) All links are bi-directional. (5) We assume that tran-
sient packet losses (e.g., due to temporary bad channel
quality) can be recovered by a lower-layer automatic re-
peat request (ARQ) mechanism. Thus, we assume that
nodes do not fail unless they are compromised. We will
also relax these assumptions in Section 7. (6) The time to
transmit a packet across one hop, including retransmis-
sions by ARQ, is bounded above by B time units. (7) A node
shares a secret key with each of its neighboring nodes. We
assume that when a node sends any packet to its neighbor-
ing node, it sends a secret-key-encrypted message to-
gether. By this, any node can authenticate neighboring
sender’s identification (ID).2 (8) The public key of a node
is assumed to be known to every other node. How to manage
the public key infrastructure is out of the scope of this paper.
(9) Events monitored by the network occur infrequently.

3.3. Notations and definitions

(1) [X1, . . . , Xn] returns the concatenation of the input
strings X1, . . . , Xn. (2) We use N(a) to denote ‘node a’ in
short. (3) Sa(X) returns a signed message for the input
string X made by N(a). The signed message is defined as
Sa(X) = [X,H(X),SIGa (H(X))], where H(X) is a hash of the in-
put string X, and SIGa(x) is a signature created on the string
x by N(a) using its private key. (4) ID(a) denotes the iden-
tification (ID) of N(a). (5) SET(a1, . . . , an) denotes the set
of nodes N(a1), . . . , N(an). (6) A suspicious set is a set of
nodes that includes at least one compromised node in it.

4. Straw-man protocol

In this section, we first discuss what are the basic meth-
odologies needed for detecting amalicious activity, andwhy
just detecting a malicious activity is not good enough for
identifying the malicious node. Then, based on such a dis-
cussion, we provide a straw-man solution to achieve our
objective. However, this straw-man solution incurs a high
computation and communication overhead. This problem
will motivate our proposed protocol in the next section.

4.1. What do we need?

First, as we have seen in Section 3, if we simply let the sen-
sor nodes send a report to the BS only when they detect an
event, the compromised node in the middle of a route may
drop this event report, or hold it for a long time. Thus, the BS
may not know within a bounded time if the event has oc-
curred. To detect this type of attacks, we therefore need peri-
odic reporting, i.e., a sensor node is required to periodically
report something to the BS,whether or not it detects an event.
In this way, if the BS does not get a new report from a certain
nodewithin a time bound, the BS can recognize that an attack
is in effect. Second, in order to detectmodification to the event
reports, we will also need to use some signature scheme, e.g.,
through public-key cryptography.

However, we caution that the use of periodic reporting
and public-key cryptography alone will not provide a satis-
factory solution to our problem. First, letting every sensor
node send a signed report periodically, regardless of
whether it has an event to report, leads to significant com-
putation and communication overhead. Second, even with
such a large overhead, thesemechanisms alone do not guar-
antee that the BS can always identify who the malicious
node is after detecting a malicious activity. This is because
the BS has to rely on other nodes’ opinions to locate the cul-
prit, but the BS cannot trust anybody except itself. Further,
themaliciousmay start actingnormally as soonas theBSde-
tects a malicious activity. Thus, the BS may not be able to
find enough evidence to convict the malicious node.

Therefore, what we need for achieving our objective is a
protocol that uses the aforementioned methodologies to
detect a malicious behavior and collects incriminating evi-
dence for the malicious behavior at the same time. We
note that we can make such a protocol by adopting the
onion-manner acknowledgment (ACK) mechanism with
staggered timeout, which is used in ODSBR [17]. We refer
to this protocol as straw-man protocol, and introduce it be-
low as our baseline protocol.

2 In the proposed protocol presented in Section 5, a node is required to
receive a packet from a designated sender. Thus, authenticating the
sender’s ID is important, because otherwise an arbitrary neighboring node
of the receiver can maliciously claims to be the designated sender. We note
that since a node is sharing a secret key only with its neighboring nodes,
the overhead to maintain the secret key is much lower than in the case
where a node shares a secret key with all other nodes in the network.
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4.2. Detail of the straw-man protocol

4.2.1. A route to collect event reports
The straw-man protocol organizes sensor nodes in mul-

tiple line networks that originate from the BS. For example,
in Fig. 1, the BS, N(a), N(b), and N(c) form a line network,
while N(d), N(e), N(f), and the BS form another line net-
work. In the straw-man protocol, the BS collects events
from each line network separately. Thus, without loss of
generality, we consider one line network model of K hops
as shown in Fig. 2. In this model, we denote by N(0) the
BS, and by N(i) the sensor node at a i-hop distance from
the BS. Define I = {0, 1, . . . , K}. We refer to the direction
from N(0) to N(K) as the forward direction, and the oppo-
site as the backward direction.

4.2.2. Malicious activity detection

Algorithm 1. Straw-man protocol at N(i)

1: if N(i) = N(0) then
2: transmitaPT toN(1) everyP/2 (or less) timeunits
3: start a timer ta(0)
4: if receiving an ACK before the timer ta(0)

expires then
5: if the ACK contains event reports then
6: deal with the event reports
7: end if
8: if the ACK is from N(i)– N(K) then
9: investigate malicious nodes (refer to

Section 4.2.5)
10: end if
11: else
12: go to line 9
13: end if
14: else if N(i) = N(K)
15: if receiving a PT then
16: generate an ACK and send it to N(K " 1)
17: end if
18: else
19: if receiving a PT then
20: forward the PT to N(i + 1)
21: start a timer ta(i)
22: end if
23: if receiving an ACK before the timer ta(i)

expires then
24: sign on the ACK and forward it to N(i " 1)
25: else
26: generate an ACK and send it to N(i " 1)
27: end if
28: end if

The pseudo-code of the straw-man protocol is given in
Algorithm 1. In straw-man protocol, N(0) (i.e., BS) sends
out a probe token (PT) in the forward direction through
the line network (line 2). The PT is defined as
PT ¼ S0ð½IDð0Þ;R;Q 'Þ; ð1Þ

where R denotes the routing information of the line net-
work model in Fig. 2, and Q is an integer variable, called
round sequence. Every time N(0) sends out the PT, it in-
creases the value of Q by 1 to prevent the old PT from being
re-used in replay attacks [19]. When N(K) receives the PT, it
generates an ACK packet (line 16). On receiving the ACK,
N(i) for any i 2 In{0,K} forwards the ACK in the backward
direction (line 24). If N(i) has an event to report, it can
embed the report into the ACK. Hence, if N(0) receives
the ACK from N(K), then no packet drop has occurred,
and N(0) can be informed of any embedded event. On the
other hand, N(0) detects a malicious activity when it does
not receives the ACK from N(K) (until a threshold time).
It is easy to see that if each round is completed within P/
2 time units, N(i) for any i 2 In{0} can report a sensed event
to N(0) within P time units.

4.2.3. Timeout setup to identify a malicious node
To identify amaliciousnode thatdrops/delays either thePT

or theACK,N(i) for any i 2 In{K} starts anACK timer ta(i) imme-
diately after transmitting the PT,whose timeout value is set to
Ba(i) (line21). If theACKhasnotbeenreceived fromN(i + 1)be-
fore ta(i) goes off, N(i) gives up waiting and generates its own
ACK packet (line 26). Ideally, only when N(i + 1) is a compro-
misednode that drops either the PT or theACK, or delays it be-
yond a certain limit, N(0) receives the ACK generated by N(i).
To ensure this property, ifN(i + 1) is legitimate,N(i + 1) should
always be able to send the ACK toN(i) before ta(i) expires. Due
to this reason, thenodescalculate themaximumtimerequired
for the PT to traverse from themselves toN(K) and for the ACK
to return to the currentpositionalong the reverse route. Then,
N(i) for any i 2 In{K} sets the timeout Ba(i) to this maximum
value, which is equal to

BaðiÞ ¼ ðK " i" 1ÞBþ ðK " iÞB: ð2Þ

Note that Ba(i) is larger than Ba(i + 1) by 2B. As Fig. 3 illus-
trates, this allows N(i + 1) to send N(i) the ACK before ta(i)
expires. This ACK can be either the one that N(i + 1) has re-
ceived from N(i + 2), or the one that N(i + 1) generates on
its own. More formally, we can state this property as the
following lemma.

Lemma 1. For any i 2 In{K}, if both N(i) and N(i + 1) are
legitimate, N(i) has no reason to generate its own ACK.

Proof. Remember that nodes start the ACK timer right after
transmitting the PT. Since N(i + 1) holds the PT for B time
units at most, ta(i + 1) starts within B time units after ta(i)
started.This implies that ta(i + 1)goesoff at leastB timeunits
earlier than ta(i) does, since Ba(i) = Ba(i + 1) + 2B. Thus,
N(i + 1) can alway send an ACK to N(i), whether it is what
N(i + 1) generates on its own when ta(i + 1) expires, or it is
what N(i + 1) has received from N(i + 2) before ta(i + 1)
expires. Hence, N(i) should not be the node that generates
its own ACK. hFig. 2. Line network model to collect event reports.
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4.2.4. Event report in backward direction
To prevent the compromised nodes from modifying the

ACK (thereby falsely accusing legitimate nodes), or tam-
pering with an event report in the ACK, the nodes are re-
quired to sign on the ACK. In detail, the ACK generated
by N(i) is defined as

ACK ¼ Sið½IDðiÞ;Q ; E'Þ; ð3Þ

where E denotes the event report. If nodes do not have
anything to report, they leave E as E = NULL. When N(i) for-
wards the ACK from N(i + 1) to N(i " 1) (i.e., it does not
generate its own ACK), the ACK sent by N(i), denoted by
ACK (i), is defined as

ACKðiÞ ¼ Sið½ACKðiþ 1Þ; IDðiÞ; E'Þ: ð4Þ

Note that the ACK is signed by the nodes in an onion man-
ner, i.e., the ACK sent by a node encapsulates the ACK (if
any) sent by higher-indexed nodes. Thus, a compromised
node cannot modify or forge the ACK from any higher-in-
dexed node, unless they collude with each other.

4.2.5. Investigation of malicious nodes
On receiving the ACK, the BS can investigate the mali-

cious nodes (line 9), providing the following guarantee.

Proposition 1. If N(0) gets the ACK generated by N(i) for
i– K, SET(i, i + 1) is a suspicious set.

Proof. Assume that SET(i, i + 1) is not a suspicious set. Then,
N(i) and N(i + 1) are both legitimate. Since no compromised
node can forge the signature of a legitimate node, the ACK
that N(0) has received is indeed generated by N(i). This
implies that N(i) has received the PT, and thus forwarded
the PT to N(i + 1). Hence, by Lemma 1, N(i) cannot be the
node that generate its own ACK. This is a contradiction. h

Note that a suspicious set contains at least one compro-
mised node, which is either the one that dropped or de-
layed the PT or ACK, or one of its colluding partners. In
addition to what Proposition 1 guarantees, N(0) can also
identify the node that modified the content of the ACK (if
any), by sequentially verifying the signatures on the ACK
from the outer shell. That is, if there exists N(j) such that
the signature of N(j) is valid, but the signature of N(j + 1)
is invalid, SET(j, j + 1) is a suspicious set [17,18].

4.2.6. Issue in the straw-man protocol
We can see that the straw-man protocol achieves our

objective: it can collect the event reports from sensor

nodes within P time units if there is no attack; Otherwise,
it can identify a suspicious set that contains at least one
compromised node. However, the straw-man protocol al-
ways requires the sensor nodes to send a signed packet
as in (4), i.e., the straw-man protocol needs to use an
expensive ACK mechanism signed in an onion manner
every P/2 time units, whether or not an event occurs. This
is important for providing the guarantee of identifying a
suspicious set whenever an event is not received on time.
Since the occurrence of events is unpredictable and the
PT generation by the BS has to be periodically done, the
sensor nodes are required to sign on the ACK in an onion
manner even though they may not have anything to report
and even when there is no attack going on (the normal
case). Clearly, this is expensive since the onion-manner
signing technique causes a heavy computation overhead
for relaying the ACK. Further, it results in a large payload
size for the ACK that often needs to be fragmented into
multiple packets.

5. Proposed protocol: SEM

The issue with the straw-man protocol is that it re-
quires an expensive onion-manner signed ACK mechanism
even in normal operations. Ideally, we would like to design
a protocol that has low overhead in normal scenarios, i.e.,
when there is no attack, and only invokes the heavier-over-
head mechanism when an attack is suspected. For this pur-
pose, we now propose our new protocol, called SEM (Secure
Event Monitoring).

5.1. Overview

At a high level, SEM preserves a similar structure to the
straw-man protocol: the BS node periodically sends out
the PT through the line network of Fig. 2, and gets an
ACK that identifies the malicious link (if any) based on
the staggered timeout mechanism. However, in order to
reduce the overhead, SEM first detects if something bad
happens, i.e., if there exists a compromised node that hin-
ders the event collection operation. If the event collection
operation looks fine, then SEM cancels the ACK timers at
the sensor nodes. Thus, SEM uses the expensive onion-man-
ner signed ACK mechanism only when some malicious
activity that disturbs the BS’s event collection process is
detected. By this design, SEM can provide the same security
guarantee as the straw-man protocol, while eliminating

Fig. 3. Staggered timeout.
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the heavy communication and computation overhead to
send the ACK under normal legitimate scenarios.

Towards this end, SEM forms the line network to collect
the event reports in such a way that both the start and the
end of the line are the BS (Section 5.2.1). This means that
the sensor nodes are physically organized in a circle that
passes through the BS. The timeout value at each node is
extended in order to cancel the ACK timer when nothing
is bad, ensuring to identify the malicious node otherwise
(Section 5.2.3). Further, the event report is embedded in
the PT, not the ACK, since the ACK is only required when
an attack is detected (Sections 5.2.2 and 5.2.4). The de-
tailed description of SEM is provided in the following.

5.2. Detail of SEM

5.2.1. A circular route to collect event reports
SEM organizes the nodes into a circular network that

passes through the BS as shown in Fig. 4a. We refer to
the circular route as event gathering circle (EGC). If the
BS finds a situation that it cannot include all the sensor
nodes in the network into one single EGC, e.g., due to sca-
lability considerations, the BS can form multiple EGCs, and
collect events from each EGC independently. As long as
each sensor node belongs to at least one EGC, the BS can
collect the event reports from the entire network. Thus,
without loss of generality, we consider the case that there
is only one EGC in the network that is modeled as a circular
route of K hops as in Fig. 4b. Note that in this model, N(i)
denotes the sensor node at a i-hop distance from the BS
in the forward direction, thus implying that both N(0)
and N(K) represent the BS.3 We can think of the network
in Fig. 4b as the network in Fig. 2 where N(0) = N(K).

5.2.2. Detection of malicious activity

Algorithm 2. SEM at N(i)

1: Notation: X@Q denotes that an object X is for
round Q

2: if N(i) = N(0) or N(i) = N(K) then
3: if receiving a PT@Q from N(K " 1)
4: if the PT@Q contains event reports
5: deal with the event reports
6: end if
7: if ta(0)@Q < Tth then
8: tansmit a PT@(Q + 1) to N(1) when

ta(0)@Q = Tth
9: start ta(0)@(Q + 1)
10: else
11: wait for Tm time units
12: generate an ACK@Q and send it to N(K " 1)
13: end if
14: end if
15: if receiving an ACK@Q before ta(0)@Q expires

then
16: if the ACK@Q is from N(i)– N(K) then
17: investigate malicious nodes (refer to

Section 4.2.5)
18: end if
19: else
20: go to line 17
21: end if
22: else
23: if receiving a PT@Q then
24: cancel ta(i)@(Q " 1)
25: forward the PT@Q to N(i + 1)
26: start ta(i)@Q
27: end if
28: if receiving an ACK@Q before ta(i)@Q expires

then
29: sign on the ACK@Q and forward it to N(i " 1)
30: else
31: generate an ACK@Q and send it to N(i " 1)
32: end if
33: end if

Fig. 4. Event gathering circle (EGC).

3 A sensor node can appear in an EGC more than once, although it is not
recommended due to its inefficiency. Thus, a preferred network topology
would be the one where we can form EGCs in such a way that a sensor node
belongs to a unique EGC only once. However, in some topology (e.g., a tree),
one may be forced to use the same node more than once an EGC. If a
compromised node acts as for example, N(i) and N(j) (i – j) in the same EGC,
then N(i) and N(j) can be considered as equivalent to collaborating
malicious nodes.
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Algorithm 2 gives the pseudo-code of SEM. The basic
framework of SEM for sending PT and ACK is almost the
same as the straw-man protocol. Namely, N(0) sends out
the PT in the forward direction of the EGC in the period
of P/2 time units or less (line 8). When N(K) receives the
PT, N(K) generates a signed ACK packet (line 12) and for-
ward it in the backward direction, in order to identify mali-
cious nodes. Nodes set up the timeout of the ACK timer
similarly to (2) (line 26). If N(i) for any i 2 In{0,K} receives
an ACK from N(i + 1) within the timeout, N(i) signs on the
ACK and forwards it to N(i " 1) (line 29); Otherwise, N(i)
generates its own ACK (line 31).

However, in SEM, if a sensor node N(i) has an event to re-
port, it embeds the event report into the PT instead of the
ACK as

PTðiÞ ¼ Sið½PTði" 1Þ; IDðiÞ; E'Þ; ð5Þ

where PT (i) denotes the PT sent by N(i). Here, N(i) embeds the
event reports into the PT only when it has an event to report.4

Since theevent report is carriedby thePT, the compromisednode
maywant to drop or delay the PT to prevent an event frombeing
reported in time toN(K), which is also the BS. However, note that
since N(0) = N(K), the BS node N(K) can measure the circulation
time tc that is defined as the elapsed time of the ACK timer ta(0)
when N(K) receives the PT (recall that ta(0) starts immediately
after N(0) sends the PT out). If all the sensor nodes in the EGC
are legitimate, the circulation time tc should be less than or equal
to (K" 1)B; Otherwise, it is certain that there exists at least one
compromised node in the EGC. However, even in such a case, as
long as the value of tc is no larger than some threshold time,
say Tth, which is less than P/2, the BS may skip identifying the
compromisednodebecausetheBScanstill collect theeventwith-
inP timeunitsafter theeventoccurred(whichisourdesignobjec-
tive). Therefore, as long as tc 6 Tth(<P/2), the BS does not generate
anACKand it cancels theACK timers at the sensornodes, through
which the BS prevents the nodes from doing the expensive ACK
processing. This implies that only when tc > Tth, N(0) receives
the ACK from the sensor nodes, by which N(0) can identify
the malicious node (line 17).

5.2.3. Timeout setup to identify a malicious node and the
potential difficulties

In order to give enough time for the BS to cancel the
ACK timers at the sensor nodes when tc 6 Tth, we extend
the timeout set-up in (2) by a time margin Tm. Let B0

aðiÞ
be the new timeout of the ACK timer ta(i) (line 26). Then,
we can express B0

aðiÞ as

B0
aðiÞ ¼ BaðiÞ þ Tm: ð6Þ

In addition, when N(K) is required to send an ACK in the
backward direction, we let N(K) start to send the ACK Tm
time units after N(K) receives the PT (line 11). Compared
to the straw-man protocol, this in effect increases the
timeout at every node in Fig. 3 by the same length Tm. Thus,
it is easy to see that even after such a change, Lemma 1 still

holds, and thus Proposition 1 also still holds. Thus, we have
the following.

Corollary 1. SEM satisfies the same property as the straw-
man protocol that if N(0) gets the ACK generated by N(i) for
i– K, SET(i, i + 1) is a suspicious set.

In order to cancel the ACK timers at the sensor nodes,
N(0) simply starts a new round. In detail, if tc 6 Tth, the
BS node (as N(K)) does not send an ACK. Instead, the BS
(as N(0)) sends out the PT of the new round when the value
of the ACK timer ta(0) in the current round reaches Tth (line 8).
This new round’s PT acknowledges the old round’s PT, and
thus the sensor nodes can safely cancel their old ACK timer
when receiving the new round’s PT (line 24). This leads the
first potential difficulty. Difficulty 1: here, we should en-
sure that the value of Tm is long enough so that the new
round’s PT can arrive at the sensor nodes before their old
ACK timer expires.

If tc > Tth, the BS node N(0) stops circulating the PT, i.e.
N(0) does not try to cancel the ACK timers at the sensor
nodes (lines 10–13). Thus, N(0) will receive the ACK signed
by the sensor nodes in the onion manner. However, a sec-
ond potential difficulty arises. Difficulty 2: a wrong choice
for the value of Tth may lead to a situation that the BS can-
not identify a suspicious set even after receiving the ACK.
To see this, consider the following example (see Fig. 5),
where we set the threshold Tth as Tth = (K " 1)B + B, i.e.,
the BS will investigate the EGC using the ACK mechanism
if the circulation time tc is larger by a margin B over the
legitimate maximum bound, (K " 1)B time units. Suppose
that N(K " 2) is a compromised node, and it holds the PT
for 2.1B time units, while other nodes consume B time
units to send the PT. Then, N(K) will find tc > Tth, and thus
generate an ACK after Tm time units, without initiating a
new round. However, to deliver the ACK, nodes may need
less than B time units, depending on its current computa-
tion load and the channel condition. Suppose that every
node takes just 0.1B time units to send the ACK. In this sit-
uation, it is easy to check that N(K " 2) can forward
N(K " 3) the ACK generated by N(K) before the ACK timer
of N(K " 3) expires. Fig. 5 illustrates this situation. There-
fore, the BS cannot find anything wrong with the compro-
mised node N(K " 2), since it will get the ACK signed by all
nodes in the EGC including N(K). Namely, although
N(K " 2) holds the PT more than B time units, and the BS
detects that tc > Tth, N(K " 2) can avoid being identified.

Therefore, we now have to answer the following two
questions:

! What should be the appropriate value for the threshold
Tth such that if tc > Tth, the BS can always identify a sus-
picious set?

! What should be the appropriate value for the time mar-
gin Tm by which the BS can cancel the ACK timers at the
sensor nodes before they go off?

Note that if we can successfully answer these two ques-
tions, SEM can achieve our objective, and only use the
expensive onion-manner signed ACK mechanism when
we need to identify the compromised nodes.

4 This procedure introduces the vulnerability that a compromised node
may simply remove the event report, since the BS has no way to know
whether there exists an event report before receiving it. We explain how
SEM deals with this threat at Section 5.2.4.
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In Proposition 2, we will answer the first question, i.e.,
to determine what is the smallest value of Tth that we
can set such that the BS is always able to identify a suspi-
cious set when tc > Tth. Note that as Tth increases, the time
required for collecting event reports from a node to the
BS goes up linearly (the exact relation is given in Corollary
2) and thus it is beneficial to use small Tth.

Proposition 2. If we set the threshold Tth = Ba(0), where
Ba(0) = (2K " 1)B (obtained by setting i = 0 in (2)), the BS can
always identify a suspicious set when tc > Tth.

Proof. Suppose that N(0) receives the PT after tc > Tth as
depicted in Fig. 6. Then, the time left in the ACK timer of
N(0) is
B0
að0Þ " tc ¼ Bað0Þ þ Tm " tc < Bað0Þ þ Tm " Tth ¼ Tm.

Namely, the time left in the ACK timer of N(0) is less than
Tm. However, as mentioned below (6), N(K) starts to send
its own ACK only Tm time units after it receives the PT.
Therefore, N(0) will not receive the ACK generated by
N(K). Instead, when N(0)’s timer expires, N(0) will receive
an the ACK that is generated by N(j) for j– K. In that case,
by Proposition 1, SET(j, j + 1) is a suspicious set. h

The goal of Proposition 3 is to answer the second of the
two questions raised above. Proposition 3 gives us a lower
bound to setting the time margin Tm. A larger value of Tm
will mean, in the case of an attack, a longer time for a node
to generate an ACK in the backward direction. This would
mean a longer time for the BS to get the ACK and therefore
to identify the suspicious set. Consequently, we would like
to set Tm to be as small as possible.

Proposition 3. If we set the time margin Tm as Tm P 2Tth,
then no legitimate sensor node will generate its own ACK
when tc 6 Tth for every round.

Proof. We prove this by focusing on a typical round Q. It is
sufficient to show that the earliest time at which the ACK
timer of any node expires is after the latest time at which
the ACK timer is canceled at that node. Recall that the
ACK timer at a node is canceled by the PT reaching the
node in the next round.

Consider the situation in Fig. 7, where the BS starts its
ACK timer of the Qth round at p1, and it gets back the PT of
the Qth round within Tth time units. Then, the BS wants to

cancel all nodes’ ACK timers that were set up in the Qth
round. Thus, the BS starts sending the PT of the (Q + 1)th
round at p2 = p1 + Tth. The last node to receive the PT of the
(Q + 1)th round will be N(K " 1). Let p3 = p1 + B + 2Tth. Then,
p3 is the latest time at which the PT of the (Q + 1)th round
reaches back to the BS, because tc 6 Tth for both the Qth and
the (Q + 1)th rounds. Here, the extra term B in p3 is due to
the fact that the BS can take up to B time units to transmit
the PT of the (Q + 1)th round. Therefore, the node N(K " 1)
will receive the PT of the (Q + 1)th round (and will
consequently cancel its ACK timer of the Qth round)
before p3.

Now, consider the time when the ACK timers of the
nodes are scheduled to expire. Recall that we are analyzing
the earliest possible time when the ACK timers can expire.
The earliest time that the ACK timers of any nodes start is
p1. The shortest timeout value is at N(K " 1), B + Tm by (2)
and (6). Hence, p4 = p1 + B + Tm is the earliest time that any
timer can expire. This means that the ACK timers for all the
nodes will expire at p4 or later. Now, since Tm P 2Tth, we
have p3 6 p4. h

Note that in the proof of Proposition 3, if the BS cannot
get the PT of the (Q + 1)th round before p3, some legitimate
sensor node may generate its own ACK for the PT of the Qth
round. However, in this case, the ACK can be discarded by
the nodes who have already received the PT of the (Q + 1)th
round, because they know that they have to send the ACK
for the PT of the (Q + 1)th round. Further, in this case, since
the BS is expecting to receive an ACK, the statement of
Proposition 3 sill holds.

Corollary 2. If tc 6 Tth in every round, which means that the
compromised nodes (if any) stay undetected, a legitimate
node can report an event within P time units, where
P = 2(B + Tth).

Proof. By Proposition 2, the BS can finish each round
within B + Tth time units when no attack is detected (here,
the term B comes from the time that the BS takes to send
the PT). Thus, each legitimate node in the EGC can report
an event within 2(B + Tth) time units, i.e., P = 2(B + Tth).
The factor of 2 comes in because in the worst case, the
event report may be generated by a node right after the
PT has crossed that node. h

Fig. 5. An example to show that a compromised node may hold the PT for more than B time units without being identified.
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5.2.4. Event report in forward direction
Suppose that a normal node, say N(i), sends an event re-

port by piggybacking it as in (5). A compromised node be-
tween N(i) and N(K) may modify the event report, or strip
N(i)’s signature and event report from the PT leaving only
the PT originated by N(0). These attacks cause the BS to
get a corrupted event report, or to remain unaware of the
event report. To prevent these attacks, when the BS re-
ceives event reports, it puts the list L into the PT of a
new round, which contains the IDs of nodes who sent the
event reports with an authentic signature in the previous
round. Thus, N(i) who sent an event report in the previous
round should see its ID on the list L in the new round.
Otherwise, it implies that somebody after N(i) modified
or removed the event report from N(i).

If N(i) does not see its ID on L, it drops the PT and gen-
erates an ACK with a piggyback error (PE) message. When
the BS receives a PE message, the BS may request the nodes

on the EGC to send, in onion-signing manner, the hash va-
lue and the signature that N(i) created for the event report,
to prove that they have seen the event report from N(i).
Based on the collected information from this request, the
BS can find at least one suspicious set that contains the
highest-indexed node among those who provide the valid
hash and signature from N(i), and its next-hop node. We
omit the proof since it can be shown in a similar way as
Proposition 1. Note that with this approach, we have elim-
inated the need for all the nodes to sign the event report in
an onion manner: only the nodes that have an event to re-
port need to sign their report. Generally, the number of
nodes that fall in this category is smaller than the total
number of nodes. Hence, this design eliminates unneces-
sary computational and packet overhead associated with
signing in an onion manner.

On the other hand, in order to identify the compromised
nodes that modify any contents in the PT, the sensor nodes

Fig. 6. An example where N(0) receives the PT after tc > Tth because N(i) delayed the PT. Because N(K) generates its own ACK only after N(0) timer expires,
the ACK that arrives at N(0) does not contain the ACK from N(K).

Fig. 7. Time margin Tm. The earliest time instant at which any ACK timer of the Qth round expires (which is p4) should be later than the latest time instant at
which any ACK timer of the Qth round is canceled (which is p3).
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verify the signature of N(0) in the PT. If a node N(i) finds
N(0)’s signature invalid, it sends an event report as E = sig-
nature error (SE) in the PT. Then, when the BS gets back the
PT, we can guarantee the following.

Proposition 4. If the BS receives an event report E = SE from
N(i) for any i 2 In{0}, SET(i " 1, i) is a suspicious set.

Proof. Assume SET(i " 1, i) is not a suspicious set. Then,
both N(i " 1) and N(i) are legitimate. Since N(i " 1) did
not generate the event report E = SE, it must have received
authentic signature of N(0) in the PT. Thus, the signatures
in the PT that N(i) has received should also be authentic,
which means that N(i) cannot be the node that generates
the event report as E = SE. This is a contradiction. h

6. Analysis: Advantage of SEM over the straw-man
protocol

To see the advantage of SEM, we now calculate how
much overhead SEM can reduce from the straw-man proto-
col, in terms of the number of packet transmissions
required.

The main difference in the overhead comes from the
fact that in normal operations, SEM does not need the ACK
signed in the onion manner. For this reason, we first calcu-
late the payload size of the ACK and thus the number of
packets that we need for accommodating the payload.

Consider the case when an attack is detected. When a
node sends an ACK, it needs to generate its own signature.
The size of the signature is 22 bytes when we use TinyECC
[6], which is a popular public key cryptography package
for sensor platforms. Since the ACK also includes the sender
ID, which is usually 2 bytes, each node needs at least 24 by-
tes to send an ACK. This means that when the ACK is con-
veyed from N(K) to N(0) through the EGC, the payload size
increases by 24 bytes at each node. However, most of the
commercial sensor nodes use IEEE 802.15.4 radios, where
the payload size of a packet must be less than 114 bytes.
Therefore, a single packet can accommodate the ACK signed
by up to four different nodes; If 4m nodes sign on an ACK,
where m is an integer, the ACK payload should be frag-
mented tom packets at a sender and reassembled at a recei-
ver. Thus, it is easy to see that if K is a multiple of 4, the total
number of packet transmissions for N(0) to receive the ACK
from N(K) via the EGC can be expressed as K(K + 4)/8, i.e.,
O(K2). Recall that in the straw-manprotocol, theBShas to re-
ceive the ACK, whether or not there exists amalicious activ-
ity. Thus, each round needs O(K2) packet transmissions for
the ACK. However, SEM does not require the BS to receive
the ACK in normal operations. Hence, considering the ACK
only, SEM can reduce O(K2) packet transmission overhead
from the straw-man protocol in the normal mode, which
corresponds to significant savings.

On the other hand, in both the straw-man protocol and
SEM, the PT can be sent in a single packet so that for each
round, we need O(K) packet transmissions for the PT circu-
lation. Thus, when there exists no event to report in the
normal mode, SEM needs only O(K) packet transmissions
in total in each round, while the straw-man protocol needs

O(K2) + O(K) packet transmissions. In SEM, if some node
needs to report an event, it signs on the PT as in (5). If there
is only one node that needs to report an event, he signs on
the PT but the others do not. In this case, SEM still needs
O(K) packet transmissions in the forward direction. In the
unlikely case that all nodes on the EGC have an event to re-
port, SEM can lead to O(K2) packet transmissions in the for-
ward direction as the straw-man protocol does in the
backward direction. However, note that SEM requires only
the nodewho sensed an event to send a report, and it is unu-
sual that all nodes on the EGC send an event report in the
same round. Therefore, the total number of packet transmis-
sions in each round is usually much smaller with SEM than
with the straw-manprotocol, unless an attacked is detected.

Table 1 summarizes the packet transmission overhead
in various cases. We can see that overhead incurred by
SEM is similar to (or possibly higher than) that of the
straw-man protocol in the round when an attack is de-
tected. However, this cost is likely small compared to the
overall system operation cost because the number of
rounds when an attack is detected should be much smaller
than the total number of rounds. Specifically, whenever an
attack is detected, our protocol can identify the compro-
mised node, which can then be removed, returning the sys-
tem back to the normal mode.

In this analysis we have focused on packet transmission
overhead and the gains due to SEM over the straw-man pro-
tocol. Note that there is also a corresponding gain in termsof
computational overhead. In the forward direction, each
node needs to verify only the signature of N(0) on the PT in
both the straw-man protocol and SEM (see in Section 5.2.4
that SEM does not require a normal node to verify the signa-
ture on the event report). In SEM, only the node to report an
event signs on thePT.When sendinganACK in thebackward
direction, both protocols require a normal node to sign on
the ACK. Verifying the signatures on the ACK is done by
the BS. Again, SEM does not need this ACK when there is no
attack. Here, recall that each signing and verification action
with asymmetric cryptography is quite expensive – 2 s and
2.4 s with TinyECC in Micaz [6]. In SEM, most of the compu-
tation overhead is only incurred when there is an attack or
when there is an event to report. Hence, the computational
overhead is also significantly reduced.

7. Miscellaneous issues

7.1. Wormhole attacks

If two colluding compromised nodes N(i) and N(j) for
any i, j 2 In{0}, j > i + 1, can talk to each other directly,
N(i) can send the PT to N(j). If this is the case, the BS cannot
get an event report from a node, say N(k), between N(i) and
N(j). To prevent this, the BS may randomly select a node
each round, and make it send a null event report by notify-
ing the command in the PT. When N(k) is selected to do so,
N(i) has to send the PT to N(i + 1), but then N(i + 1) can find
the round sequence Q, which is increased by more than 1
from the one that it has seen. This can be an indication that
N(i) is a compromised node. If N(i) still directly forwards
the PT to N(j) in this case, N(j + 1) will find that the PT does
not contain the null event report from N(k), which can also
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be an indication that N(j) is compromised. By making any
node who first finds such an indication generate an error
event report, we can provide the same security guarantee
as in Proposition 4.

7.2. Jamming attacks

Note that a jamming attack may cause a node to stop
circulating the PT or the ACK. If N(i + 1) is a victim of the
jamming attack, i.e., it cannot successfully receive a PT or
an ACK because a jamming signal keeps coming in, N(i) will
generate its own ACK. In this case, the BS thinks that SE-
T(i, i + 1) is a suspicious set, which is wrong. Therefore,
when we also consider the possibility of a jamming attack,
we replace SET(i, i + 1) in the Proposition 1 with the set of
the nodes within the jamming distance from the nodes
N(i) and N(i + 1). Then, it is easy to see that the statement
of the proposition is still valid.

7.3. Persistent failures

By choosing a sufficiently large number of retransmis-
sions in the ARQ mechanism, the packet loss probability
due to transient node failures or link failures can be very
small. However, it may not be zero in practice. Thus, we
can still lose the PT or the ACK due to such transient fail-
ures, although chances are rare. This implies that in prac-
tice, SET(i, i + 1) identified by Proposition 1 may not
include any compromised node. However, in such a case,
SET(i, i + 1) can be regarded as a set of nodes that requires
attention to repair. Thus, it is still useful to identify such
a set from the network management point of view.

7.4. Formation of the EGCs

There would be many ways to form EGCs. The following
is a simple example.

(Step 1) Let S denote the set of nodes in a network. The
BS node creates a topology map of S, for example, using a
link state routing protocol. Initially, all nodes are not
marked.

(Step 2) Suppose that X is the farthest node from the BS
among the unmarked nodes in S. Using Dynamic Source
Routing (DSR) protocol, the BS node requests a route to
X. The response from X may include the round-trip path
between X and the BS. This round-trip path forms an
EGC.5 Mark the nodes in the EGC.

(Step 3) Repeat Step 2 until all nodes in S are marked.
As is commonly assumed in the literature, we assume

that there is no compromised node at the beginning, and
thus the formation of EGCs can be done with no attack at
the beginning. In the Step 2, a node is allowed to mark
more than once, which means that the node belongs to
multiple EGCs.

8. Experiments

We have implemented SEM using TOSSIM [20], a popular
sensor network simulator based on TinyOS [21]. For our
experiments, we form three EGCs: EGC1 is comprised of
6 nodes (K = 6), EGC2 8 nodes (K = 8), and EGC3 10 nodes
(K = 10), as shown in Fig. 8. Note that SEM’s security guaran-
tees, e.g., Propositions 2 and 3 and Corollary 2, are not
dependent on the locations of nodes, but only on the values
of K and B. Thus, the locations chosen in Fig. 8 are only in-
tended to show an example of how many retransmissions
we need to recover a link failure for a given deployment.

The link gain between any two nodes is determined by a
Java tool included in TinyOS v2.1, called LinkLayerModel
[22], which models path loss and log-normal shadowing.
We use a path loss exponent of factor 2.5, and the standard
deviation of log-normal shadowing is 3 dB. By this model,
the average receiving power at one-hop distance is suffi-
ciently high for correct reception. For digital signature,
we assume to use TinyECC [6] that takes about 2 s to gen-

Table 1
Packet transmission overhead (F: forward direction; B: backward direction; K: the number of nodes on the event collection route).

Case SEM Straw-man protocol

F B F B

No attack detected
No node to report an event O(K) 0 O(K) O(K2)
All nodes to report an event O(K2) 0 O(K) O(K2)

An attack detected
One node to report an event O(K) O(K2) O(K) O(K2)
All nodes to report an event O(K2) O(K2) O(K) O(K2)
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Fig. 8. Node locations in three EGCs for experiments: including the BS
(i.e., N(0)), EGC1, EGC2, and EGC3 consist of 6, 8, and 10 nodes,
respectively.

5 This round trip path can contain the same node more than once in it,
and so does the EGC. If a compromised node is included in the same EGC
more than once as N(i) and N(j) for example, N(i) and N(j) should be
considerred to be in collabortation.
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erate a signature and about 2.4 s to verify a signature. This
TinyECC operation time mimics Micaz platform. Including
the signature overhead and retransmission time (if neces-
sary), the nodes hold the PT or the ACK less than 10 s,
i.e., B = 10 s. Since Propositions 2 and 3 determine Tth = -
Ba(0) and Tm = 2Tth, we choose (Tth,Tm) in the unit of sec-
onds as (110,220) for EGC1, (150,300) for EGC2, and
(190,380) for EGC3. Thus, for example, in the EGC3, we re-
gard tc < 190 s as a legitimate case.

Fig. 9 shows the false-alarm rate as we vary the number
of retransmissions. Here, the false-alarm rate is defined as
the inverse of the number of successive rounds until we
lose the PT due to natural causes, for example, due to a
bad communication channel. Since in our experiments,
we limit the number of rounds that we execute the simu-
lation for to 100, if we do not lose the PT within 100
rounds, we report the false-alarm rate to be zero. The re-
sult in Fig. 9 shows that when we do not use the ARQ
mechanism (i.e., no retransmission), the PT can be easily
lost due to link failures. Hence, the false-alarm rate is high.
In addition, the false-alarm rate is a little higher when we
run three EGCs simultaneously than when there exists only
one of the three EGCs. As we can expect, this is because the
interference increases if the three EGCs work at the same
time. However, when we allow the nodes to retransmit
the PT up to three times on transmission failures, nearly
all false-alarms are eliminated. Therefore, we conclude
that at most three retransmissions would be a reasonable
choice for the ARQ mechanism in our configuration.

In Fig. 10, we show the detection rate as a function of
the amount of the delay introduced by a single compro-
mised node. For the experiment, we select different posi-
tions for the compromised node: N(2) and N(4) for EGC1,
N(2), N(4), and N(6) for EGC2, and N(2), N(5), and N(8) for
EGC3. As we mentioned earlier, the compromised nodes
may hold the PT longer than B = 10 s without being de-
tected, since the BS will not complain unless the circula-
tion time tc is larger than the threshold Tth. Fig. 10a–c
shows such a situation. For example, if a compromised
node in EGC3 holds the PT for 110 s, the BS still receives
the PT back within Tth, and thus the compromised node
never gets detected. However, when the delay added by
the compromised node is between 110 and 170 s, the cir-

culation time tc may or may not be larger than the thresh-
old Tth, depending on how long the other nodes hold the
PT. We can see from Fig. 10c that if the amount of the mali-
cious delay is over 170 s, it is always detected. Here,
remember that once the malicious activity is detected,
the BS will not cancel the ACK timers at the sensor nodes,
thus gathering an ACK from the nodes. Although we do not
show in this figure, once detected, the compromised node
is always identified in a form of a suspicious set, as we
proved. Further, the amount of malicious delay that the
compromised node can introduce without being detected
is always the amount of time that is left over in Tth after
the nodes actually spent their own time to transmit the
PT. Thus, if we reduce the value of B, and thus reduce the
value of Tth, then the compromised node must also de-
crease malicious delay to avoid being detected. We can
see this effect from Fig. 10d and 10e, which is obtained
from almost the same configuration as Fig. 10a–c, except
that the value of B is changed from 10 s to 1 s.6 We can also
see from the figures that the position of a single compro-
mised node does not affect the detection rate as is to be ex-
pected since the detection is only dependent on the
cumulative time for circulating the PT in a EGC.

In Fig. 11, we study the case when there exist multiple
compromised nodes in EGC2 that delay the PT. We are
interested in finding out how the positions of these com-
promised nodes will determine which one of them is iden-
tified by SEM. Recall from Proposition 1 that if a node N(i)
generates an ACK, it will be included in the suspicious set.
In Fig. 11, the y-axis normalized frequency represents the
number of the ACKs generated by N(i), divided by the total
number of cases that BS finds tc > Tth. For this experiment,
we assume that N(2), N(4), and N(6) are malicious in
EGC2, and each of the three nodes holds the PT for x/3 s
in order to cause x seconds of accumulated delay. We set
these delays to be identical so that we can focus on how
the position of the compromised node affects the probabil-

Fig. 9. False-alarm rate according to the number of retransmissions for the ARQ mechanism.

6 It is possible to set B = 1 s if we assume the use of the Imote2 platform
that can perform a signature operation within a few tens of milliseconds
[6].

1832 J. Koo et al. / Ad Hoc Networks 11 (2013) 1820–1835



ity of being identified, when several compromised nodes
delay the PT in collusion. Note that as shown in Fig. 10b,
when the accumulated delay x is equal to or larger than
130 s in EGC2, we will be able to identify one of the com-
promised nodes. Further, in our simulation setting, the
malicious nodes are assumed to generate an ACK only if
necessary, i.e., only when their ACK timer expires. That is,
the malicious nodes wait for the ACK from other nodes
until their ACK timer expires. We do not allow them to
generate an ACK anytime before the expiration of a ACK

timer, because in that case they directly reveal that they
are malicious (by being included in a suspicious set). We
can make a number of observations from Fig. 11. First, note
that BS may receive the ACK that is generated by N(1), N(3),
or N(5). In all the cases, one of malicious nodes N(2), N(4),
and N(6) is included in a suspicious set. Second, we can see
that although one among the three malicious nodes is al-
ways located, the node being identified may vary depend-
ing on the accumulated delay. The larger the accumulated
delay is, the more likely that the node closer to BS is iden-
tified. This is because larger delay leaves less time in the
ACK timer till expiration at each node, and the node closer
to BS needs to wait longer to receive the ACK generated by
N(K).

9. Conclusion

In event monitoring, a number of sensor nodes are de-
ployed over a region where some phenomenon is to be
monitored. When an event is detected, the sensor nodes
report it to a base station, where a network operator can
take appropriate action using the event report. However,
such an event reporting process can be easily attacked by
compromised nodes in the middle that drop, modify, or de-
lay the report packet. No prior work has been able to pro-
vide a security guarantee of timely and reliable collection
of event reports at a base station in the presence of Byzan-
tine adversarial nodes that are capable of colluding among
themselves.

Fig. 10. Detection rate according to the delay introduced by a single compromised node.
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there are multiple compromised nodes that delays the PT. Here, we
assume that N(2), N(4), and N(6) are compromised nodes. For x seconds of
given delay in legend, each compromised node delays the PT for x/3 s.
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To resolve this issue, we have presented SEM, a secure
event monitoring protocol in the face of Byzantine adver-
saries. SEM provides a strong and useful guarantee that,
whenever the compromised nodes launch an attack and
causes the event report from a legitimate node not to reach
the BS within a bounded time, the BS can identify a pair of
nodes that are guaranteed to contain at least one compro-
mised node. As a result, the system can defeat the attack in
the sense that the network operator can remove or repro-
gram the detected compromised node one by one, eventu-
ally securing a safe route to the BS for collecting an event
report. To the best of our knowledge, we are not aware of
any other protocols in the literature that can provide sim-
ilar security guarantees. Hence, we believe that our gain in
security is significant.

SEM is designed to reduce the overhead due to asym-
metric cryptographic operations in terms of computational
overhead and additional network packets that are gener-
ated: it uses low overhead in normal scenarios when there
is no attack, and only invokes the heavier overhead when
an attack is launched.

Our future work will focus on having SEM work under
more dynamic scenarios, e.g., where nodes may move or
be incrementally introduced into the network, and making
SEM even more resource efficient.
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